32 research outputs found

    IceCube's In-Ice Radio Extension: Status and Results

    Full text link
    In 2006-2010, several Radio Frequency (RF) detectors and calibration equipment were deployed as part of the IceCube array at depths between 5 to 1400 meters in preparation for a future large scale GZK neutrino detector. IceCube's deep holes and well-established data handling system provide a unique opportunity for deep-ice RF detection studies at the South-Pole. We will present verification and calibration results as well as a status-review of ongoing analyses such as ice-properties, RF noise and reconstruction algorithms.Comment: 4 pages, 6 figures, to appear in the proceedings of the Acoustic and Radio EeV Neutrino detection Activities (ARENA) 2010 conferenc

    NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x

    Get PDF
    We reconsider the Standard Model interactions of ultra-high energy neutrinos with matter. The next to leading order QCD corrections are presented for charged-current and neutral-current processes. Contrary to popular expectations, these corrections are found to be quite substantial, especially for very large (anti-) neutrino energies. Hence, they need to be taken into account in any search for new physics effects in high-energy neutrino interactions. In our extrapolation of the parton densities to kinematical regions as yet unexplored directly in terrestrial accelerators, we are guided by double asymptotic scaling in the large Q^2 and small Bjorken x region and to models of saturation in the low Q^2 and low x regime. The sizes of the consequent uncertainties are commented upon. We also briefly discuss some variables which are insensitive to higher order QCD corrections and are hence suitable in any search for new physics.Comment: 21 pages, LaTeX2e, uses JHEP3.cls (included), 8 ps files for figures published versio

    The ExaVolt Antenna: A Large-Aperture, Balloon-embedded Antenna for Ultra-high Energy Particle Detection

    Full text link
    We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASA's suborbital super-pressure balloon program in Antarctica. EVA will improve over ANITA's integrated totals - the current state-of-the-art in UHE suborbital payloads - by 1-2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA's instantaneous antenna aperture is estimated to be several hundred square meters for detection of these events within a 150-600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energyComment: 20 pages, 14 figures; introductory section shortened; additional horizontal polarization simulation results included. In final review for Astroparticle Physic

    Ultra-high neutrino fluxes as a probe for non-standard physics

    Full text link
    We examine how light neutrinos coming from distant active galactic nuclei (AGN) and similar high energy sources may be used as tools to probe non-standard physics. In particular we discuss how studying the energy spectra of each neutrino flavour coming from such distant sources and their distortion relative to each other may serve as pointers to exotic physics such as neutrino decay, Lorentz symmetry violation, pseudo-Dirac effects, CP and CPT violation and quantum decoherence. This allows us to probe hitherto unexplored ranges of parameters for the above cases, for example lifetimes in the range 103104 10^{-3}-10^{4} s/eV for the case of neutrino decay. We show that standard neutrino oscillations ensure that the different flavours arrive at the earth with similar shapes even if their flavour spectra at source may differ strongly in both shape and magnitude. As a result, observed differences between the spectra of various flavours at the detector would be signatures of non-standard physics altering neutrino fluxes during propagation rather than those arising during their production at source. Since detection of ultra-high energy (UHE) neutrinos is perhaps imminent, it is possible that such differences in spectral shapes will be tested in neutrino detectors in the near future. To that end, using the IceCube detector as an example, we show how our results translate to observable shower and muon-track event rates.Comment: 16 pages, 10 figure

    FORTE satellite constraints on ultra-high energy cosmic particle fluxes

    Full text link
    The FORTE (Fast On-orbit Recording of Transient Events) satellite records bursts of electromagnetic waves arising from near the Earth's surface in the radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna. We investigate the possible RF signature of ultra-high energy cosmic-ray particles in the form of coherent Cherenkov radiation from cascades in ice. We calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE) neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff. Some constraints on supersymmetry model parameters are also estimated due to the limits that FORTE sets on the UHE neutralino flux. The FORTE database consists of over 4 million recorded events to date, including in principle some events associated with UHE neutrinos. We search for candidate FORTE events in the period from September 1997 to December 1999. The candidate production mechanism is via coherent VHF radiation from a UHE neutrino shower in the Greenland ice sheet. We demonstrate a high efficiency for selection against lightning and anthropogenic backgrounds. A single candidate out of several thousand raw triggers survives all cuts, and we set limits on the corresponding particle fluxes assuming this event represents our background level.Comment: added a table, updated references and Figure 8, this version is submitted to Phys. Rev.

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight

    Full text link
    We present a detailed report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity. Neutrino physics results will be reported separately.Comment: 50 pages, 49 figures, in preparation for PR

    Phonon driven transport in amorphous semiconductors: Transition probabilities

    Full text link
    Inspired by Holstein's work on small polaron hopping, the evolution equations of localized states and extended states in presence of atomic vibrations are derived for an amorphous semiconductor. The transition probabilities are obtained for four types of transitions: from one localized state to another localized state, from a localized state to an extended state, from an extended state to a localized state, and from one extended state to another extended state. At a temperature not too low, any process involving localized state is activated. The computed mobility of the transitions between localized states agrees with the observed `hopping mobility'. We suggest that the observed `drift mobility' originates from the transitions from localized states to extended states. Analysis of the transition probability from an extended state to a localized state suggests that there exists a short-lifetime belt of extended states inside conduction band or valence band. It agrees with the fact that photoluminescence lifetime decreases with frequency in a-Si/SiO2_{2} quantum well while photoluminescence lifetime is not sensitive to frequency in c-Si/SiO2_{2} structure.Comment: 41 pages, 3 figures, submitted to Phys. Rev.
    corecore